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 Klipp and Mahrt (2004) demonstrate, based on data obtained during CASES-99, 

that the similarity function for the wind velocity gradient, Φm = κz/u* dU/dz, departs from 

the linear form 1 + 4.7 z/L (e.g., Businger et al., 1973) in very stable conditions (z/L  > 

1), where u* = τo
1/2, T* = - Ho/u*, κ is the von Karman constant, L = u*

2/[κ β T*] is the 

Monin-Obukhov length, τo and Ho are the surface fluxes of the momentum and 

temperature. The authors argue convincingly that the phenomenon is associated with self-

correlation (i.e., a significant correlation coefficient between considered variables), since 

both expressions, Φm and z/L, contain a common divisor u*. Large random errors for very 

stable conditions increase the self-correlation, and consequently produce false results. 

They conclude that consequently a relationship between Φm and z/L in very stable 

conditions might never be empirically established with satisfactory confidence. The 

purpose of this note is to show that the reported departure can also be related to a 

deficiency of Monin-Obukhov's flux-based scaling in very stable conditions (L < 1 m), 

and the presence of another similarity regime, characterized by a gradient-based scaling. 

 The Monin-Obukhov similarity yields the following predictions for mean values 

of the absolute temperature and wind velocity in stable (z-less) conditions: 

 

                                        dT/dz ~ T*/L*  ~ β Ho
2/τo

2 ~ const 

                                                                                                                                                (1) 

                                       dU/dz ~ u*/L*  ~ β Ho / τo      ~ const 
 

The above expressions imply that the gradient Richardson number in this case is sub-

critical, Ri = (β dT/dz)/(dU/dz)2 ~ β T*L*/u*2  ~ 1. 

 In the strongly stable case, characterized by weak winds, clear skies, strong 
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radiative cooling near the surface, and intermittent turbulence (e.g., Businger et al., 1973, 

Van de Wiel et al., 2003; Mahrt, 2003), Ho ~ 0,  τo ~ 0, and the ratio Ho/τo in (1) might 

not be well defined (as seen from the CASES-99 data plotted by e.g., Steeneveld et al., 

2004). As a result, the Monin-Obukhov similarity predictions for dT/dz  and dU/dz cannot 

be accurately determined. Moreover, because dT/dz → ∞  (strong radiative cooling near 

the earth's surface) and dU/dz → 0 (calm conditions near the surface), the Richardson 

numbers are expected to be overcritical. This implies that the set of the governing 

parameters of Monin-Obukhov similarity theory: τo, Ho, and β, is improper in the very 

stable regime.   

  Following the above conclusion, one might choose an alternate set of governing 

parameters in the strongly stable case: the buoyancy parameter β = g/Το, the gradients 

dT/dz, dU/dz, and the vertical velocity variance σw
2 (note that fluxes are excluded from 

this list). Based on Buckingham's Π-theorem (e.g., Sorbjan, 1995), the following three 

local (z-dependent) scales can be obtained: 

 

                                                 un(z ) = σw  

                                                 

! 

L
n

= "
#
w

$dT /dz
                                                           (2) 

                                                 Tn(z)  =  Ln dT/dz                         

 

The Π-theorem implies that any statistical moment, scaled in terms of (2), should be a 

function of the gradient Richardson number 

! 

Ri =
"dT /dz

dU /dz( )
2

. For instance, for the scalar 
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fluxes, we will have: 

                                                        

! 

"
w'# '

unTn
= f H (Ri)            

                                                                                                                                         (3)                            

                                                         

! 

"
u'w'

un
2

= fM (Ri)  

 

which is equivalent to:  

                                                  

! 

w'" ' = #
$w

2
f H (Ri)

%dT /dz
dT /dz  

                                                                                                                                        (4) 
                                                  

! 

u'w' = "#w

2
fM (Ri)  

 

where fH and fM are empirical functions. The variables in (3) are not self-correlated. The 

term on the right hand side of the first equation in (4), before the temperature gradient, 

can be recognized as the eddy diffusivity KH. When σw → 0,   then 

! 

w'" ' , 

! 

u'w'  → 0, as 

expected in a very stable, intermittent case. Equations (4) imply that both fluxes are 

dependent on height. 

 The second expression in (4) can also be obtained in the flux-gradient form, by 

assuming that in addition to the vertical velocity scale un, the horizontal velocity scale 

can be defined as uh = LndU/dz. Consequently: 

 

                         

! 

u'w' = "uhun f (Ri) = "
#w

2
f (Ri)

$dT /dz
dU /dz = "

#w

2
f (Ri)

Ri
1/ 2

                           (5) 

 

which implies that  fM(Ri) = f(Ri)/Ri1/2. The term on the right hand side of (5), before the 

velocity gradient, can be identified as the eddy diffusivity Km. One might argue that f(Ri) 
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→  Ri1/2 , when Ri → 0 (neutral limit), which yields: Km ~ u*z  and -

! 

u'w' ~ u*
2. 

 In order to compare predictions of both considered scaling approaches, from (4) 

and (5) it can be formally obtained (for non-zero fluxes): 

 

                                      

! 

dU /dz"
dT /dz  u'w'

w'# '

f H (Ri)

f (Ri)
 

                                                                                                                                        (5) 

                                     

! 

dT /dz"
#dT /dz  w'$'

u'w'

fM (Ri)

f H (Ri)
                 

 

It should be stressed that the above expressions should not be understood as new 

similarity predictions for gradients, as such gradients remain external parameters in (2).   

 Ignoring the dependence of the fluxes on height, (5) can be rewritten in the form: 

 

                                              

! 

"m =
#z

u
*

dU

dz
$
z

L
s
2
f
1
(Ri) 

                                                                                                                                          (6) 

                                              

! 

"h =
#z

T
*

dT

dz
$
z

L
sf
2
(Ri)  

 

where 

! 

s =
Nu

*

"T
*

 is a dimensionless parameter, while 

! 

N = "dT /dz  is the Brunt-Våisålå 

frequency. The parameter s can be reduced from the above equations, based on the 

relationship between Ri and s. Such a relationship can be obtained from (6) in the form: 

s3 = Ri-1 f2(Ri)/f12(Ri). The expressions (6) indicate that the form of Φm and Φh in very 

stable conditions will be disturbed by terms dependent on the Richardson number Ri (and 

consequently on z/L).  

Concluding, the departure from similarity predictions, detected by the authors in 
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their Figure 3, could be related not only to the self-correlation, but also to the presence of 

another similarity regime (characterized by the gradient-based scaling) in very stable 

conditions (z/L > 1, and L < 1 m), for which the Monin-Obukhov scaling and predictions 

are not valid.  
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