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Abstract The microstructure of a stably stratified boundary layer, with a significant low-level 

nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, 
USA. The reported, high-resolution vertical profiles of the temperature, wind speed, wind 

direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions 

on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating 

instantaneous (1-sec) background profiles are applied to the raw data. The background potential 

temperature is calculated using the "bubble sort" algorithm to produce a monotonically 

increasing potential temperature with increasing height. Other scalar quantities are smoothed 

using a running vertical average. The behaviour of background flow, buoyant overturns, 

turbulent fluctuations, and their respective histograms are presented. Ratios of the considered 

length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in 

practice for estimating instantaneous profiles of the dissipation rate. 
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1. Introduction 
 
According to conventional wisdom, stably stratified and horizontally homogeneous turbulence 

can be characterized by background (filtered) state parameters. The development of small-scale 

turbulence is assumed to result from the competition between the background wind shear, 

associated primarily with the streamwise velocity, and the stabilizing effects of the background 

buoyancy. The wind shear S supplies the kinetic energy for turbulent motion, while buoyancy, 

expressed by the Brunt-Väisälä frequency N = (g/TodΘ/dz)1/2, acts to restrain it (here, Θ is the 

background virtual potential temperature, g is the buoyancy acceleration, and To  is the reference 

virtual temperature). If S2 > N2, shear production dominates, and turbulence is amplified. On the 

other hand, if S2 < N2, buoyancy prevails and turbulence is suppressed, and eventually decays. 

Linear stability theory implies that small turbulent perturbations grow exponentially, when the 

Richardson number of the background flow, Ri = N2/S2, is limited by a critical value Ricr = 1/4 

everywhere in the fluid (e.g., Miles 1961; Howard 1961; Woods 1969). 

 It is becoming increasingly clear, however, that such a classical concept of stable 

turbulence regimes is not sufficient. First of all, the conventional approach does not include the 

effects of buoyancy waves. Processes associated with the intermittent breaking of internal waves 
constitute a major source of turbulence (Fritts and Rastogi, 1985). Blumen et al. (2001) reported 

the occurrence of billows approximately 300 m in length, contained in a layer depth of 30 m, and 

translated over the observational site for approximately 30 minutes. Fritts et al. (2003) 

documented a ducted-wave event with an apparent horizontal wavelength of a few km, and a 

wave phase speed slightly larger than the mean wind in the direction of propagation. 

 Turbulent flows in the stable boundary layer (SBL) contain thin, quasi-horizontal layers 

that have large, positive and negative vertical gradients (e.g., Balsley et al., 1998; 2003). 

Continuous high-resolution echoes in the stable boundary layer provided by radar and sodar 

sounders indicate that such layering systems are randomly distributed, a few metres deep, many 

kilometres long, and modulated by internal buoyancy waves on multitude scales (Chimonas, 

1999). During the passage of internal buoyancy waves, these thin layers and steep gradient 

regions can move up and down by many tens of metres.  
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 There is a rising body of observational evidence suggesting that turbulence survives at 

Richardson numbers exceeding unity (e.g., Galperin and Sukoriansky, 2007). The Richardson 

number is not a unique characteristic of the flow, andt strongly depends on the definition of the 

basic state and the vertical resolution of measurements.  It can strongly fluctuate with height 

around the critical value, causing its interpretation to be sometimes vague (e.g., De Silva et al. 

1999).    
 Observations, especially those obtained during the Cooperative Atmosphere–Surface 

Exchange Study-1999, CASES-99 (e.g., Banta et al 2002, Poulos et al, 2002, Balsley et al., 

2003), show that an ample understanding of the stably stratified boundary layer depends on high-
resolution vertical measurements. Similarly, large-eddy simulations indicate that an accurate 

description of the SBL requires about 1-m spatial resolution (e.g., Beare and MacVean, 2004). 
Therefore, it is not so obvious that an adequate description of the extremely complex structure of 

turbulence in the stable regime can be retrieved from filtered state parameters, as implied by the 

conventional approach, or obtained based on vertically coarse measurements. 
 The goal of this paper is to address the above issues by analyzing the microstructure of 

the stably stratified boundary layer. For this purpose high-resolution profiles, collected by the 

Tethered Lifting System (TLS) during the CASES-99 experiment, will be considered. The paper 

has the following structure: first, the TLS system is briefly reviewed in Section 2. Section 3 

presents an analysis of the instantaneous (1-sec) background flow, buoyant overturns, turbulent 

fluctuations, and their histograms and relevant scales. Final remarks are presented in Section 4.  

 

 
2. TLS description 
 
The Tethered Lifting System (hereafter, TLS) was developed by the Cooperative Institute for 
Research in Environmental Sciences (CIRES) at the University of Colorado in Boulder, USA. 

The system employs either a high-tech kite, or an aerodynamic balloon, to lift a series of 

turbulence packages, suspended at prescribed intervals below the lifting platform (Balsley 2008). 

During the CASES-99 experiment, which took place in Kansas in the fall of 1999, the TLS 
instrumentation included both a basic meteorological payload and a series of turbulence 

payloads.  
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 The basic meteorological payload archived 1-sec reference values of temperature, 

pressure, humidity, wind speed and direction, telemetry, and various “housekeeping” details. 
Each of the turbulence packages collected high-frequency (200-Hz) fluctuations of both 

temperature and wind speed, using cold-wire and hot-wire sensors, respectively. The turbulence 
payloads also carried conventional low-frequency sensors, i.e., a Pitot tube, a solid-state 

temperature sensor, and a piezo-electric pressure sensor for sampling mean wind speed, 

temperature, and pressure, along with a three-axis tilt sensor and a magnetic compass for wind 
direction measurements. Separate archiving for each payload package was accomplished by 

using onboard digital flash-memory storage. 
 All TLS results were essentially point-source measurements, although in the profiling 

mode the vertical resolution of 1-s samples was on average 0.34 m (standard deviation equal to 

0.15 m). The vertical velocity of the sensor packages, for both ascents and descents, was 

approximately 0.4 m s-1, so that a single profile required somewhat more than 15 minutes. 

Determinations of the dissipation rate ε and the temperature structure constant CT
2 were made 

during post-analysis, using techniques described by Frehlich et al. (2003).   
There are a number of inherent advantages and disadvantages associated with the TLS 

technique. Advantages include very high vertical resolution, continuous altitude coverage from 

the surface to 1-2 km, and the ability to launch a series of instrumented packages suspended at 

intervals from the same tether.  This final feature enables a determination of vertical gradients 

over a few metres and provides an easy method of inter-calibration between packages. A listing 

of specific disadvantages includes the difficulty of accurately determining the vertical velocity 
and vertical fluxes, and the inability to operate in inclement weather or in clouds. 

 

 

3. Results 

 
3.1 Raw profiles 

 
Over 60 vertical TLS profiles were collected during CASES-99. In this paper, we consider only 

two profiles, obtained on the night of October 14, 1999 (IOP 6). The first profile was made 

beginning at 0745 UTC (0145 LST), while the second profile began four hours later, at 1148 

UTC (0548 LST), about 1 hour before sunrise. Three other TLS profiles, separated by 1-hr 
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intervals, are also available for the period under study, but are not presented in this paper. 

Furthermore, although data from two additional payload packages were recorded during the 
flights under study, our analysis is limited only to data from one package. 

 The boundary layer on the night of October 14 1999 evolved under a light surface wind  

(about 1 m s-1) and clear sky conditions (e.g., Fritts et al. 2003; Balsley et al. 2006). Near-surface 

temperatures decreased steadily from 7.5°C at the beginning of the observation period to 4°C 

prior to local sunrise. Raw vertical profiles of the pertinent  flights are presented in Figure 1.  

 This figure depicts 1-sec profiles of potential temperature, wind velocity, wind direction, 

and the energy dissipation rate. Note that all of the profiles displayed in the figure exhibit 

significant small-scale fluctuations with height. As we will show in subsequent sections, these 

fluctuations are real and strongly inter-related. 

 Examination of Figure 1a shows that the temperature at about 25 m above the surface 

decreases gradually at a rate of about 0.6 K h-1 in the interval from 0745 to 1148 UTC. The 

potential temperature profile at 0745 UTC appears to have a three-layer structure, with different 

vertical gradients. The potential temperature below the 100-m level reveals a positive curvature, 

with a mean gradient of about 36 K km-1, between 100 m and 190 m, the profile exhibits a 

negative curvature with a mean gradient of about 19 K km-1, and finally, the gradient above 190 

m is about 3 K km-1. This three-layer structure is also apparent at 1148 UTC, although it is less 

pronounced.   

  The sudden fall in the temperature gradient at about 190 m marks the top of the boundary 
layer. Another estimate of the stable boundary layer height h can be obtained based on the 

critical value of the Richardson number in the form: 

  

                                                                     

! 

h = Ri
c

U
m

N
                                                             (1) 

 

where Um is the maximum wind velocity in the stable boundary layer, and 

! 

N  is the mean Brunt-

Väisälä frequency. For Um = 14 m s-1, 

! 

N  = 0.038 s-1, and 

! 

Ri
c

= 0.5, we obtain h = 184 m. 

 The layer above 190 m is only slightly transformed by radiative cooling (see e.g., Fritts et 
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al. 2003, Fig. 2). and can be identified as the residual layer, a remnant of the previous day’s 

mixed layer, with its own dynamic activity observed throughout the nighttime (Mahrt and 
Vickers 2006; Balsley et al. 2008). Vertical velocities in this layer, recorded by the University of 

Wyoming King-Air B200 research aircraft, are presented by Nappo (2002, Fig.1.3), and they 
show wave-like structures, identified as ducted buoyancy waves (Nappo, 2003; Fritts et al. 

2003). Banta et al. (2002) present the horizontal variability of the wind on that night, as seen in 

profiler/sodar data. 
 The wind velocity profile in Figure 1b shows a low-level jet at the height of 190 m, with a 

maximum velocity of about 14 m s-1 at 0745 UTC, and 13 m s-1 at 1148 UTC. The mean wind 

shear below 190 m, is about 7 m s-1 km-1 in both profiles. The wind direction at 0745 UTC, in 

Figure 1c, changes only slightly with height, from about 110o near the surface to about 120o at 

300 m. At 1148 UTC, however, the wind direction varies from about 90o at 50 m to about 135o 

at 300 m. This notable clockwise shift, to a more southerly flow in the upper layers on the latter 

profile, is most likely due to the effects of inertial oscillations.  
 The fluctuations of the dissipation rate ε in Figure 1d are real and substantial (note that a 

logarithmic horizontal scale is used in the figure). Within the 50 - 175 m layer at 0745 UTC, the 

dissipation rate is in the range of 10-3 - 10-2 m2 s-3, and these values decrease by roughly an 

order of magnitude at 1148 UTC, particularly at higher heights. A significant decrease of the 

dissipation rate above 190 m is comparable, but discernable in the two profiles. 
 
3.2  Background profiles 
 

An adequate knowledge of turbulence requires specification of the background environment. 
This is not an easy task, particularly when observations consist of single, instantaneous profiles. 

To facilitate appropriate understanding under these limitations, we have applied two separate 
methods for evaluating background profiles. The first method pertains only to the potential 

temperature profiles, while the second method is employed for all of the other scalar quantities. 

This procedure is justified by the requirement that the background virtual potential temperature 
profile must be a monotonically increasing function of height under stable conditions. With this 

stipulation the Brunt–Väisälä frequency N remains a real function of height. Note that we have 
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ignored the effect of humidity in this study, for the sake of simplicity, thus, have based our 

calculations on the potential temperature, even though employing the virtual potential 
temperature would generally be more appropriate.  

 The background potential temperature is calculated here following the method proposed 
by Thorpe (1977), which involves the reordering of a non-monotonic profile of the potential 

temperature Θ(z) into a monotonic profile defined here as 

! 

˜ " (z) . This is accomplished by an 

evaluation of "overturns" in the potential temperature profiles. The overturns are defined as 
occurring at those levels where the potential temperature profile decreases with increasing 

height. Following this procedure, the resulting 

! 

˜ " (z) profile is an approximation to the profile 

that would be measured if the turbulence were allowed to relax adiabatically to a motionless 

state. This concept has been previously used in the analysis of oceanic, lake, and laboratory 

measurements, as well as in numerical experiments, applied to the analysis of strong mixing 
events near the tropopause (e.g., Winters et al. 1995; Caulfield and Peltier 2000; Smyth and 

Moum 2000; Luce et al. 2002; and Gavrilov et al. 2005). 
 The re-ordering procedure above can be explained by considering a discrete vertical profile 

of the potential temperature {Θ1 ,.., ΘN}, defined at levels zj, where j = 1, 2,..., n.  The method 

applies a "bubble sort" algorithm, which generates the potential temperature sequence in 

monotonically increasing order 

! 

{"
i1
# "

i1
...# "

iN
}, where {i1, …, in} is a permutation of a 

sequence {1, ..., n}. The algorithm progresses in steps numbered j, where j = n,...,1. For each j, 

the values Θ(zk), where k = 1,..., j – 1, are analyzed, beginning at the lowest height. An 

interchange, or "swapping" of the temperature values of the adjacent levels, is performed when 

Θ(zk) > Θ (zk+1). As a result of this procedure, the highest temperature is moved to the top of 

each overturning region. This process is repeated for a temperature sequence decreased by one. 

The resulting monotonically reordered profile at 1148 UTC is shown in Figure 1a. 

 If air at any level zj is moved to the level zk to generate a stable, monotonic potential 

temperature profile, it is possible to define the Thorpe displacement as:  
 

                                                                      ΔZj = zj - zk                                                              (2)  
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The value of ΔZj describes the depth of a density overturn in the stable stratified fluid.  Note that 

strong mixing is characterized by large displacements, which are negative at the top and positive 

at the bottom of each overturning event. There is an obvious conceptual analogy between the 

values of these displacements and the mixing length used in early turbulence theories. 

 As mentioned above, for scalars other than potential temperature, we apply only a 25-

point running average: 

                                                                      

! 

U j =
1

25
U j+k

k="12

12

#                                                     (3) 

 
where U can be the wind velocity modulus, wind velocity components, wind direction, or the 

dissipation rate. These smoothed 25-point-averaged profiles for wind velocity, wind direction, 

and the dissipation rate for 1148 UTC, are plotted as the thick lines in Figures 1 b, c, and d.  

 The 25-point running average is equivalent to a low-pass filter. Its width is on average 

equal to 8.6 m, owing to the approximate TLS ascent/descent rate of 0.4 m s-1. The standard 

deviation of this quantity is 3.1 m, due to fact that the vertical velocity of the TLS changed with 

height. Specifically, the filter width is about 10 m near the surface, about 5 m at 150 m, and 

about 12 m at 250 m. We have determined that this variation has a relatively minor effect on the 

filtered values, and also found that 

! 

" # ˜ " , i.e. that the 25-point smoothed potential temperature 

profiles differ from those produced by sorting, and are not monotonic.  

 

3.3 Richardson number and surface heat flux 

 

The gradient Richardson number is evaluated using the monotonic potential profile 

! 

˜ " (z)  as: 

 

                                                                         

! 

Ri j =
N j

2

S j

2
                                                              (4) 

 

where 

! 

S j is the wind shear, and 

! 

N j is the Brunt-Väisälä frequency at level j: 

 

                                                   

! 

N j

2
=

g

To

d ˜ " 

dz

# 

$ 
% 

& 

' 
( 

j

=
g

To

˜ " j +1 ) ˜ " j)1

z j +1 ) z j)1

                                               (5a) 
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! 

S j

2
=

dU

dz

" 

# 
$ 

% 

& 
' 
j

2

+
dV

dz

" 

# 
$ 

% 

& 
' 
j

2

=
U j+1 (U j(1

z j+1 ( z j(1

) 

* 
+ 

, 

- 
. 

2

+
V j+1 (V j(1

z j+1 ( z j(1

) 

* 
+ 

, 

- 
. 

2

             (5b) 

 

and  

! 

U  and 

! 

V  are vertically-averaged components of the wind velocity. 

 The resulting gradient Richardson numbers are shown in Figure 2a and 2 b for the two 

profiles under study. Fluctuations in the figures are substantial (note the logarithmic horizontal 

scale), and the presence of adjacent layers can be noticed, with values of Ri significantly above 

and below the critical value Ric. This fact implies that concept of the local gradient Richardson 

number is ambiguous in cases characterized by non-linear background parameters.   
 Comparison of Figures 2a and 2b suggests that the smaller Ri values at 0745 UTC should 

correspond to generally more intense turbulence during that period, relative to the latter case. On 

average, Ri is 0.11 up to 190 m above the Earth's surface at 0745 UTC, with minimum and 

maximum values lying between 0.0002 and 4.6 (on average N2 

! 

" 0.001 s-2, and S2 

! 

" 0.09 s-2). 

Above the 190 m level, Richardson numbers exhibit wavy, quasi-periodic undulations with 

height. On average at 1148 UTC, Ri is 0.27 in the 190-m layer above the Earth's surface, with 

minimum and maximum values in the range from 0.0003 to 21 (N2 

! 

" 0.001 s-2, S2 

! 

" 0.06 s-2). 

Since the values of Ri are shifted toward larger values, the situation at 1148 UTC is thus 

expected to be less turbulent.  

 Note that the cooling rate at the level of 190 m in Figure 1a is about zero. Using the 

background temperature equation, assuming that the heat flux at the top of the SBL vanishes, and 

also that the contribution of the radiative flux within the SBL can be neglected, we obtain: 
 

                                                    

! 

ˆ H (zL ) =
1

(t
2
" t

1
)

˜ # (z,t
2
) " ˜ # (z,t

1
)[ ]dz

zL

h

$                                    (6) 

 

where 

! 

ˆ H  is the average turbulent heat flux in the interval (t1, t2), h is the depth of the boundary 

layer, t1 and t2 are instants of time, and zL is the height near the underlying surface. Based on 

Figure 1, we obtain that 

! 

ˆ H  

! 

" - 0.006 K m s-1 at 

! 

z
L
 = 30 m. The mean values of the heat flux 

(over a much shorter time interval), evaluated by Balsley et al (2006, Fig. 11) using 55-m tower 
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data, are lower.  

 

3.4 Scalar fluctuations 

 
We define the potential temperature fluctuations as: 
 

                                                                    

! 

" # j =# j $
˜ # j                                                                                                 (7)  

 
Negative fluctuations 

! 

" # j  are associated with negative displacements ΔZj. The fluctuations for 

other scalars we will be defined as: 

                                                                     

! 

" " U j = U j #U j                                                             (8)  

 
where U is the wind velocity, wind direction, or the dissipation rate.  

 Based on (2) (3), (7), and (8), we also specify the following statistical measures of 
the magnitude of each varying quantity:   

 

                            

! 

"Z j =  #Z j  ,                

! 

"# j =  $ # j   ,              

! 

"U j =  # # U j        

                                                                                                                                                       (9) 

                            

! 

" Z j
=  #Z j( )

2

 
$ 

% & 
' 

( ) 

1/ 2

,        

! 

"# j
=  $ # j( )

2

 
% 

& ' 
( 

) * 

1/ 2

,      

! 

"U j
=  # # U j( )

2

 
$ 

% & 
' 

( ) 

1/ 2

 

 

which will be employed in Section 3.3. Note, that the absolute measures in (9) are equivalent to 
the standard deviations. We verified that the absolute means are smaller than the quadratic 

means, e.g.,  

! 

"Z j = 0.74# Zj  (standard deviation  = 0.11 m). 

 The vertical distributions of displacements 

! 

"Z j  are depicted in Figures 3 a, b. Figure 3a 

refers to the profile at 0745 UTC, and shows several, relatively deep overturning events, with 

centres at levels of 80, 120, 150, 180, and 200 m. The displacements in the largest event, around 

the level of 150 m, are in the range from about -20 to 20 m. The overturning events above 200 m 

are intermittent with height, and relatively small, and as indicated in Figure 3b, the overturning 

activity diminishes with time, as more stable stratification gradually develops. The largest 

displacements, at 1148 UTC, range from about -10 to 10 m at the level of 150 m.  
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 The vertical distributions of the temperature fluctuations 

! 

" # j  are depicted in Figures 4 a, b. 

The overturning events are less clearly marked, compared to those in Figure 3. The temperature 

fluctuations at 0745 UTC increase with height, and are the largest in the layer from about 140 to 

190 m. The amplitude of oscillations in this layer is about 0.4 K and the temperature fluctuations 

decrease with time. The temperature fluctuations at 1148 UTC increase with height, and are the 

largest in the layer from about 130 to 160 m.  
 The wind velocity fluctuations 

! 

" " U j  (not shown) do not seem to be correlated with the 

displacements 

! 

"Z j , nor the temperature fluctuations 

! 

" # j . At 0745 UTC, they increase with 

height, and are the largest in the layer from about 100 to 150 m, where they range from about -

0.8 to 1 m s-1. The fluctuations 

! 

" " U j  decrease with time, at 1148 UTC, they are the largest in the 

lowest layer, up to the level of about 100 m, where they range from about -0.5 and 0.5 m s-1.   

 The vertical distributions of the wind direction fluctuations 

! 

" " # j  (not shown) are nearly 

uniform with height. The largest excursions occur at 0745 UTC, and are located in the layer from 

about 80 to 130 m, where they range from approximately -20o to 20o. The fluctuations only 

slightly change with time. The largest fluctuations at 1148 UTC are located in the layer from 

about 100 to 130 m, where they range between -12o to 12o.  

 

3.5  Histograms 
 
Our analysis can further be refined by analysis of histograms, obtained for displacements and 

fluctuations. In Figure 5, histograms for the vertical displacements 

! 

"Z jare displayed; other 

histograms, which are not shown, look similar, and therefore will only characterized by their 

statistics in Table 1. 
 The distributions in Figure 5 seem to be made of two exponential functions. This is not 

surprising, since exponential distributions are known to occur naturally in cases describing 

number of "events" per unit time or distance, which occur in homogeneous Poisson processes. 

The difference between two independent, identically distributed, exponential random variables, 
is governed by a double exponential distribution, also referred to as the Laplace distribution 

(Abramowitz and Stegun 1972). The distribution can be thought of as two exponential 

distributions, joined together back-to-back.  
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 When the mean value is zero, as in our case, the double exponential distribution is 

described by the density function of the form

! 

f (x) =
1

2s
e
"|x| / s , an standard deviation 

! 

"  equal to 

! 

2s .  Since the density function is symmetric, the skewness 

! 

S = µ
3
/" 3  = 0, where 

! 

µ
3
 is the 

third moment about the mean, and due to the heavier tails, kurtosis 

! 

K = µ
4
/" 4  = 6, where 

! 

µ
4
 is 

the fourth moment about the mean. Kurtosis can be considered as an indicator of the degree of 

intermittency, with larger values indicative of processes with greater intermittency (e.g., Blumen 

et al., 2001). Higher kurtosis means that more of the variance is due to infrequent extreme 
deviations. For comparison, kurtosis for the normal distribution is equal to 3. 

 The statistical characteristics of the considered histograms are shown in Table 1which 

indicates that the standard deviations decrease with time, for displacements and wind velocity, 

and are nearly the same for temperature and wind direction. The frequencies at the origin of the 

histograms at 1148 UTC are larger, except for wind direction. The values of kurtosis at 0745 

UTC are about 5, and at 1148 UTC, kurtosis is larger than 6 for all variables, except for wind 

direction, for which it is equal to about 5. The skewness is not zero, as would be expected, and 

can be explained by the fact that all statistical moments can be easily distorted by extreme values 

in the tails.  

 

3.6 Relevant scales 

 

Stably stratified turbulent flows are governed by the relative strength of local buoyancy, shear, 

and viscous forces. Their effects can be quantified using length scales, obtained from 

dimensional analysis and physical arguments. The result, however, is not unique to  stable 

conditions, since various scaling sets can be formed in this case (Sorbjan 2008 a, b). This fact 
differentiates stable flows from convective or neutral turbulence, which is usually characterized 

by single length scales (e.g., Fernando and Hunt 1996). 
According to Kolmogorov's theory (1943), the smallest eddies in the SBL are isotropic, 

and at the size of the Kolmogorov length scale:  
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! 

L
k

=
" 3 / 4

#1/ 4
                                                                 (10) 

 

where ν is the molecular viscosity, and ε  is the dissipation rate. Larger eddies must overcome 

the effects of the buoyancy force in order to become isotropic, and this can take place only for 

eddies formed by substantial velocity gradients. The theory of locally isotropic turbulence 

indicates that the change of velocity ΔU over a distance L is: ΔU ~ ε1/3 L1/3.  Thus, the mean 

velocity gradient can be expressed as: dU/dL ~ ε1/3/L2/3. In order to evaluate the size of 

turbulent eddies, for which the effects of the buoyant forces are overpowered by wind shear, an 

analogue of the Richardson number can be defined, and assumed equal to its critical value:  

 

                                                  

! 

Ri =
N
2

("1/ 3L2 / 3)2
= Ri

c
                                                    (11) 

 

where N is the Brunt–Väisälä frequency. From this, the length scale, often referred to as the 

Ozmidov scale, can be obtained in the form (e.g., Ozmidov 1968): 

 

                                                       

! 

L
o

=
"1/ 2

N
3 / 2

                                                                (12) 

 

where dimensional analysis implies that the equivalent velocity scale is Vo = ε1/2/N1/2, and the 

temperature scale To = ε1/2N1/2/β.  

 The Ozmidov scale Lo defines the size of the largest isotropic eddies, thatare able to exist 

despite buoyancy. In flows where turbulence and wave motion are simultaneously present, the 

inverse of the Ozmidov scale defines the buoyancy wavenumber that separates the buoyancy 

from the inertial subrange. The Froude number, Fr = ε/(ν N2), proportional to the ratio of Lo and 

Lk, characterizes the separation of scales between the largest scale of turbulence not controlled 

by buoyancy, and the smallest viscous scales. As stable turbulence decays, Lo decreases. 



 14 

Ultimately, all scales of turbulence are actively inhibited by buoyancy, and the Froude number 

decreases.  
  An equivalent length scale can be obtained by expressing the dissipation rate in (12) as ε 

~ σw
3/L, where σw

2 is the vertical velocity variance. This yields: 

 

                                                                          

! 

L
w

=
"
w

N
                                                             (13)  

 

and the resulting scale can be seen as indicative of the greatest distance a fluid particle can move 

against the density gradient. The equivalent velocity scale is Vw = σw, and the temperature scale 

Tw  = σwN/β (Sorbjan 2006).  

 Another scale can be derived by equating the production and dissipation terms in the 

temperature variance equation,  leading to: 

 

                                                                          

! 

L" =
#$"

N
2

                                                           (14) 

 
 which scale is an estimate of vertical excursions in a stratified fluid against buoyancy 

stratification (Ellison, 1957). It can also be derived by assuming that the temperature fluctuation 

! 

"'= l'N 2
/# , where l' is the vertical displacement, for which 

! 

l'
2

= L" . The equivalent velocity 

scale is Vθ (z) = βσθ/N, and the temperature scale Tθ(z) =σθ  (Sorbjan, 2006; 2008 a, b).  

 Sorbjan (2008a) concluded fromtwo composite cases described by Mahrt and Vickers 
(2006) that the scaling (14) yields more consistent results than that based on (13). The 

dimensionless moments, scaled by (14), approach constant values for sufficiently large values of 
the dimensionless height of Ri. Itsweire et al. (1993) showed, from direct numerical simulation 

of homogeneous turbulence that when Ri < Ric, both Lo and Lθ  grow slightly with time, when 

the flow is fully developed. When Ri > Ric, the range of overturning turbulent scales decreases 

until Lo 

! 

" 9 LK. When Ri = Ric, all three length scales Lo, Lθ and Lk may eventually reach a 

constant with time.   
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 Monin and Obukov (1954) introduced a scale that indicates the size of eddies for which 

the local production of turbulence by stress τ3/2/L* is balanced by the energy loss through work 

against the buoyancy βΗ: 

                                                                           

! 

L
*

=
" 3 / 2

#$H
                                                          (15) 

 

where τ, H,  are the turbulent fluxes of momentum and temperature, and κ is von Karman 

constant. The equivalent velocity scale in this case is U* = τ1/2, and the temperature scale T* = -

H/U*. Sorbjan (2006) argued that the "flux-based" scaling (15) is valid only in cases of strong, 

continuous turbulence, when the gradient Richardson number Ri is constant and sub-critical. For 

weak turbulence (very stable regime), the "gradient-based" scaling based on (12) - (14) is more 
appropriate. 
 Thorpe (1977) proposed a scale directly related to density overturns from instantaneous 

temperature profiles. The scale can be defined as the root-mean-square of the vertical 

displacements ΔZ in (2) required to reorder a measured profile to be gravitationally stable: 

 

                                                                     

! 

L
Z

= "Z
2
1/ 2

                                                          (16) 

 

where 

! 

 indicates the average over a single overturn. Because overturns are one-dimensional, 

the scale gives a good estimate of an overturn size, as long as the flow is horizontally 

homogeneous. Based on the previously applied expression for the temperature fluctuation 

! 

"'= l'N 2
/# , it follows that 

! 

L
Z

= "Z 2 ~ l'
2

= L# . Moreover, it can be expected that the product 

LZ
2N2 is a measure of the vertical velocity variance of the overturns, while the product LZ

2N3/β 

is proportional to the turbulent heat flux. 

 It can be anticipated that if LT << Lo, turbulence is fully developed, nearly isotopic, and 

independent of buoyancy forces. When LT 

! 

" Lo, vertical overturning becomes inhibited by 

buoyancy, and anisotropic turbulence starts to develop. Various measurements in oceans and 

lakes have shown, however, that the Thorpe scale is usually nearly equal to the Ozmidov scale. 
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Based on maritime observations, Dillon (1982) found that LT 

! 

" 1.25Lo and Crawford (1986) 

obtained a larger coefficient LT 

! 

" 1.52Lo for the oceanic thermocline, while Ferrron et al (1998) 

received LT 

! 

" 1.05Lo for an abyssal region.  

 

3.7 Scale evaluation 
 

The scales mentioned above can be evaluated locally, or as averages over the entire, or part of 

the, domain. Herein  we choose to define the scales based on the 25-point running average (3), 
employing the quantities listed in (5) and (9). Specifically, the Ozmidov length, and the related 

velocity and temperature scales, are evaluated as: 

 

                                                                      

! 

Loj =
" j( )

1/ 2

N j

2( )
3 / 4

                                              (17a) 

 

                                                           

! 

Voj =
" j( )

1/ 2

N j

2( )
1/ 4

                                              (17b) 

 

                                                                  

! 

To j =
(" j )

1/ 2
N j

2( )
1/ 4

#
                                                     (17c)  

 
where the subscript j indicates that the scales are calculated at each level zj. 

The scales defined in (17) are presented in Figure 6. At 0745 UTC, all scales exhibit 

strong fluctuations with height, and seem to reflect the overturning events displayed in Figure 3a. 

On average, the Ozmidov scale Lo is about 10 m in the 190-m layer, with values in the range 

from 2 to 40 m.  The scale decreases with time, due to the development of more stable 

stratification, and at 1148 UTC, its vertical distribution is more uniform. On average, Lo is about 

2.8 m in the 190 m layer, with values in the range from 0.5 to 6.5. The velocity scale Vo has a 
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very similar distribution, and also reflects the overturning events displayed in Figure 3a. At 0745 

UTC, on average Vo is 0.25 m s-1 and at 1148 has decreased to 0.10 m s-1. The temperature scale 

To at 0745 UTC is on average, equal to 0.2 K in the 190 m layer, and at 1148 UTC has reduced 

to 0.12 K.   
 The scale (14), and the related scales, are evaluated as: 

 

                                                                       

! 

L"j =
#$% j

N j

2
                                                        (18a) 

 

                                                                       

! 

V"j =
#$% j

N j

2( )
1/ 2

                                                      (18b) 

   

                                                                       

! 

T"j = #$ j                                                             (18c) 

                       
Note that 

! 

"# j
 can also be used in (18) instead of 

! 

"# j, which is not expected to significantly 

change the above scales.  

The scales (18) strongly fluctuate with height (not shown). At 0745 UTC, on average, the 

scale Lθ j is 3.8 m in the 190 m layer, with values in the range from 0.2 to 12.5, and decreases 

with time, due to the development of a more stable stratification. At 1148 UTC, its vertical 

distribution is more uniform, and on average, Lθj is 1.3 m in the 190-m layer, with values in the 

range from 0.01 to 6. The velocity scale Vθj has a very similar distribution. At 0745 UTC, in 

average Vθj is about 0.1 m s-1, and at 1148,  has decreases to 0.05 m s-1. The temperature scale Tθj 

is on average equal to 0.07 K at 0745 UTC. At 1148 UTC its average value in the 190-m layer is 

0.06 K.     
 We now introduce the analogue of the Thorpe scale, and equivalent velocity, and 
temperature scales in the form: 
 

                                                                          

! 

LZj =" Z j
                                                        (19a) 
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! 

VZj = "# Z j
#$ j( )

1/ 2

                                           (19b) 

 

                                                                           

! 

TZj ="# j
                                                         (19c) 

                
The profiles of these scales look very similar to the profiles of those from (17). They 

strongly fluctuate with height (not shown) and decrease with time due to the development of a 

more stable stratification. At 0745 UTC, LZj is on average equal to 5.9 m (the standard deviation 

is 2.7 m) in the 190 m-layer, while at 1148 UTC, LZj is 2.3 m (standard deviation = 1.3 m, large 

values below 40 m were excluded). The decrease of LZj in time implies that turbulence acquires 

an anisotropic structure due to suppressed vertical mixing.  

The velocity scale VZj at 0745 UTC is on average equal to 0.16 m s-1 (the standard 

deviation is 0.06 m s-1) in the 190-m layer and at 1148 UTC, its average value has decreased to 

0.07 m s-1 (standard deviation = 0.04 m s-1).  The temperature scale TZj at 0745 UTC is on 

average equal to 0.09 K (the standard deviation is 0.03 K), and at 1148 UTC has decreased to 

0.07 K (the standard deviation is 0.04 K). The above estimates are summarized in Table 2. 

 

3.8 Scale dependencies 

 
A comparison of the Ozmidov scale and related scales (16), with the scales listed in (18), is 

shown in Figure 7, indicating, that within the SBL: 
 

                               

! 

LZj

Loj
" 0.6                        (20a) 

 

                               

! 

VZj

Voj

" 0.5                                                          (20b) 

   

                               

! 

TZj

Toj
" 0.4                                                     (20 c)                               
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for both cases (large values near the surface were not included). The fact that the above ratios are 
approximately constant (in the considered range of Ri) can be applied in practice to reconstruct 

instantaneous profiles of the dissipation rate based on high-resolution measurements of 

temperature. 
 A comparison of the velocity scale 

! 

Voj , defined in (17b), with the parameter 

! 

"U j , listed 

in (9) is shown in Figure 8, indicating that approximately:  

 

                                                                            

! 

"U j

Voj

#1                                                          (21) 

 

(large values near the surface were not included). From (21) it follows that in the specified range 

of height, the instantaneous profiles of the dissipation can also be approximately reconstructed 

based on wind fluctuations.  

 We also verified that within the boundary layer, approximately: 

 

                               

! 

"Z j

Loj
# 0.4                      (22a) 

                                                                                                                                                

                               

! 

"# j

Toj
$ 0.4                                                      (22b) 

 

 The obtained relationships (20) - (22) imply an existence of a general similarity regime, 

for which a statistical moment X can be expressed as: 

! 

X j

Loj
a
Voj

b
Toj
c

= const . Remarkably, the 

similarity seems to be valid for instantaneous parameters. 

 Applying the definitions (17) and (18), one can also obtain: 

 

                                                                         

! 

L"j

Loj
=
V"j

Voj

=
T"j

Toj
= r                                              (23) 
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which, together with (20)-(22) indicate that the scales (17), (18) and (19) are equivalent (since 

they are proportional). We confirmed that the parameter r is nearly constant with time, 

independent of height, and on average equal to about 0.4 within the SBL.  
From (18) and (22)-(23), we have that, approximately: 

 

                                                  

! 

d ˜ " 

dz

# 

$ 
% 

& 

' 
( 
j

=
T

" j

L" j

=
Toj

Loj
)
*" j

*Z j

                                             (24) 

 

and since 

! 

d ˜ " /dz( )
j
 increases in time, the ratio 

! 

T"j / L"j  must also increase, mostly due to the 

decreasing values of 

! 

L"j . 

 
4. Conclusions  
 
Microstructure of the stably stratified boundary layer has been investigated, based on high-

resolution atmospheric observations made during CASES-99 on October 14, 1999. Two 

instantaneous soundings, reported in this paper, were collected using the CIRES Tethered Lifting 

System. The first sounding was performed at 0745 UTC, while the second was at 1148 UTC, 

about 1 hour before sunrise.  

 Two methods for evaluating background profiles have been applied to the raw data. The 

background potential temperature has been calculated and based on the one-dimensional sorting 

algorithm. For other scalars (wind velocity, direction, and dissipation rate), the vertical running 

average, defined over 25 adjacent points, has been applied. The vertical displacements 

! 

"Z j , and 

fluctuations Θj’, Uj’’, αj”, around the background parameters, have been calculated and 

analyzed. 

 The vertical displacements 

! 

"Z j  mark several, relatively deep overturning events in the 

SBL. The overturning activity diminishes with time, as greater stable stratification develops. The 
overturning events above the SBL are intermittent and relatively small. 

 The histograms of displacements 

! 

"Z j and the fluctuations Θj’, Uj’’, αj” indicate that 

all variables are governed by double exponential distributions. The values of kurtosis at 0745 

UTC are about 5 and at 1148 UTC, kurtosis is larger than 6 for all variables, except for the wind 
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direction, for which it is equal to about 5. The skewness is not zero, and was most likely 

distorted by extreme values in the tails. 
 The height of the boundary layer has been estimated at about 190 m, for both cases, and 

substantial scatter characterizes the profiles of the Richardson number. The presence of adjacent 
layers is observed, with the values of Ri significantly above and below the critical value. The 

case at 0745 UTC is found to be more turbulent, as there exists only a relatively small number of 

layers with overcritical values of Ri in the SBL.  On average, the Richardson number Ri  = 0.11 
at 0745 UTC, and 0.27 at 1148 UTC. Above the level of 190 m, the Richardson numbers 

undergoes wavy undulations along the z-axis. 
 Several scales for length, temperature, and velocity in the SBL have been considered and 

evaluated: (i) the Ozmidov length scale Loj, and related scales based on the dissipations rate, (ii) 

the scale Lθj and related scales based the temperature fluctuations, and finally, (iii) the scale LZj 

and related scales based the vertical displacements. The considered scales have been shown to be 
equivalent. The results implied an existence of a general similarity regime, for which statistical 

moments can be expressed in terms of the scales Lo, Vo, and To. Remarkably, the similarity 

seems to be valid for instantaneous parameters.   

 The estimates of the scales and their ratios provide relevant information for large-eddy 

simulations of nocturnal turbulence, and can also be applied in practice to estimate the 

dissipation rate, based on high-resolution measurements of temperature and wind velocity.  
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                                                              Figure captions  
 
Fig. 1. Profiles of: (a) potential temperature, (b) wind velocity, (c) wind direction, and (d) 

dissipation rate, obtained during CASES-99 at 0745 UTC, and at 1148 UTC of October 14 1999. 
The background profiles (blue lines) are plotted only for profiles at 1148 UTC. 
 
Fig. 2. Profiles of the Richardson number at: (a) 0745 UTC, and (b) 1148 UTC. The critical 

value Ric is marked by a dotted line. 
  
Fig. 3. Profiles of displacement ΔZj calculated from Eq. 2 at: (a) 0745 UTC, and (b) 1148 UTC.   

 

Fig. 4. Profiles of the temperature fluctuations Θj’ calculated from Eq.7 at: (a) 0745 UTC, and 

(b) 1148 UTC. 
Fig. 5. Histograms of the displacements ΔZj at: (a) 0745 UTC, and (b) 1148 UTC. 
 
Fig. 6. Profiles of: (a) Ozmidov length scale Loj, (b) velocity scale Voj, and (c) temperature scale 

Toj, at 0745 UTC (black lines), and at 1148 UTC (blue lines).   

Fig. 7. Profiles of: (a) length scale ratio LZj/Loj, (b) velocity scale ratio VZj/Voj, and (c) 

temperature scale ratio TZj/Toj, at 0745 UTC (black lines), and at 1148 UTC (blue lines).    

Fig. 8. Profiles of the ratio δUj/Voj at: 0745 UTC (black line), and 1148 UTC (blue line). 
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