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The magnetic fields associated with reconnection in the edge of the reversed field pinch
configuration have been measured in the Madison Symmetric Torus. The measured magnetic field
structure is compared with theoretical predictions computed in both toroidal and cylindrical
geometries. The summation of multiple modes has been accomplished to reveal a complex but still
coherent edge structure. Key terms of relevant Ohm’s law are accessible from magnetic
field measurement and reveal the ordering #!1 /ne"J!B"E#$J$, which implies that two
fluid effects are important in the physics governing this reconnection. Further, it is seen that the
nonlinear three-wave coupling of the Hall term acts as a driving mechanism for this linearly stable
mode. © 2010 American Institute of Physics. #doi:10.1063/1.3521336$

Magnetic reconnection—the often violent process by
which magnetic fields are topologically rearranged into a
new magnetic geometry—has been identified in a variety of
astrophysical and laboratory plasmas.1 Sweet2 and Parker3

offered the first quantitative description of this process to
explain astrophysical observations. Subsequently, many the-
oretical variations have been proposed to describe reconnec-
tion more accurately, particularly focusing on the explanation
of fast and impulsive reconnection. Models which treat the
electron fluid and ion fluid independently allow for the in-
clusion of the Hall term in the applicable Ohm’s law and are
a particularly promising way to explain the observed rates of
fast reconnection.4 Models which result in impulsive recon-
nection typically invoke nonlinear or three-dimensional
effects.5

Reconnection appears in nature and in laboratory plas-
mas in two general forms: driven and spontaneous. Driven
reconnection occurs only because of external forcing,
whereas spontaneous reconnection results from the develop-
ment of a local instability which allows the plasma to reach
a lower energy state.6 A classic form of spontaneous recon-
nection, known as a tearing instability, will occur in a toroi-
dal plasma when two conditions are met. First, if the geom-
etry permits a quantized wave vector with no parallel
component !k! ·B! =0", the mode will be resonant. Second, de-
pending on the details of the plasma equilibrium, the mode
may also be unstable.7 In particular, instability can be in-
duced by a strong gradient in the plasma current density such
that the associated gradient length scale is shorter than k−1.6

The reversed field pinch !RFP" !Ref. 8" is a toroidal
plasma configuration with strong shear in the mean !equilib-
rium" magnetic field. The RFP typically displays a periodic
sawtooth cycle characterized by a slow peaking of the cur-
rent profile followed by a sudden global relaxation event that
relaxes gradients. During these events, magnetic tearing re-
connection occurs at multiple radial locations where different
Fourier modes are resonant. Modes resonant in the core re-
gion appear spontaneously through linear instability associ-

ated with the gradient in the current profile. Modes resonant
in the edge region are predicted and measured to be linearly
stable, but are inferred to grow to large amplitude through
nonlinear drive.9,10 While the resonant surfaces are localized
due to the strong magnetic shear, the core-resonant and edge-
resonant modes have global radial structure, allowing them
to interact nonlinearly.

In this letter we report detailed magnetic field measure-
ments of the driven reconnection associated with the domi-
nant Fourier mode in the edge of an RFP. We compare the
large-scale radial structure of the reconnection magnetic field
with a magnetohydrodynamic !MHD" prediction in toroidal
geometry and find excellent agreement. Although the large-
scale radial structure agrees with MHD, the dynamics of the
reconnection layer and drive do not. We measure the terms in
Ohm’s law which are accessible through an assortment of
magnetic diagnostics. We find that the Hall term is large
compared to both the electric field and the resistive term
#!1 /ne"J!B"E#$J$, indicating that two fluid effects are
important for the magnetic reconnection of this edge-
resonant mode. The observed Hall term is large at the spatial
location of the reconnection X-point, a result which is some-
what different from the traditional picture of Hall reconnec-
tion. The strongest contributions to the measured Hall term
arise from nonlinear three-wave coupling to the linearly un-
stable modes resonant in the core. Thus, unstable magnetic
reconnection sites resonant in a far region of the plasma can
provide the external forcing to drive the local reconnection
of a mode that would be stable in isolation and the nonlinear
interaction is mediated by the Hall term of the generalized
Ohm’s law.

These measurements were performed on the Madison
Symmetric Torus !MST",11 an RFP with major radius
R=1.5 m and minor radius a=0.52 m, using insertable
magnetic probes in standard 225 kA plasmas. Measurements
are taken near the resonant surface of the dominant edge-
resonant mode, which is located where the toroidal compo-
nent of the mean field vanishes !B%=0". Radial profiles of
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the magnetic fluctuations within the plasma are constructed
from the correlation of insertable probe data with data from a
toroidal array of 64 magnetic pick-up coils on the inner wall
of MST. Correlation analysis allows us to extract the spatial
Fourier mode structure of a single-point measurement within
the plasma. The Fourier decomposition of the magnetic field
at the plasma boundary !r=a" is measured by the toroidal
array. These measurements as well as the local insertable
probe measurement are recorded for many realizations of the
sawtooth reconnecting plasma. Averaging over this ensemble
of realizations in a particular manner extracts the toroidal
mode number decomposition !n-spectrum" associated with
the single-point probe measurement. Repetition of this pro-
cess with the probe inserted to different radial positions re-
sults in the toroidal magnetic field spectrum as a function of
radius.

All signals are Fourier decomposed into

S!&,%" = %
m,n

sm,nei!m&+n%".

Each n mode has a dominant m component !m=0 for n'4;
m=1 for n(5", so we approximate m=mn, and

S!&,%" = %
n

snei!mn&+n%".

To extract the spectrum of a probe signal, S, we assume
a priori that S is strongly coupled to the magnetic field at the
wall such that

sn!r,t"ei!m&+n%" = cn!r,t"xn!a,t"ei!m&+n%",

where cn is a complex constant of proportionality and is the
same for every realization of the sawtooth and xn!a , t" repre-
sents the amplitude and phase of the magnetic field measured
at the wall. The quantity sn may in general have a random
phase, but the averaging method described below identifies a
statistically constant phase relative to xn. The quantity of
interest is then sn= &sn&ei!)xn−)sn"=cn&xn&. This approach is very
reasonable for magnetic field since magnetic structures are
radially broad in MST plasmas.

It is seen experimentally that during each sawtooth real-
ization a given magnetic mode develops in the plasma at a
different random phase. In this case, there is an approximate
equivalence between an ensemble average of many similar
sawtooth events and an average over toroidal angle of a
single typical event. This provides the context for a more
intuitive discussion in which average quantities in the spatial
domain are calculated, with the understanding that we will
substitute an ensemble average for a toroidal average when-
ever data is processed.

It can be shown12 that

sn =
2'SXn( − 2i'SXn

†(
'&xn&(

, !1"

where '¯ ( indicates an average !over toroidal angle or saw-
tooth ensemble", S!r , t" is the probe signal within the plasma,
and Xn

#†$!a , t" is the value of the #90° phase shifted$ magnetic
field of the !m ,n" toroidal mode, measured at the wall by the
toroidal array and evaluated at the angular !& and %" location

of the probe. A measure of confidence can be found by cal-
culating an autocorrelation using a single toroidal array coil
!i.e., using one coil of the toroidal array as the “probe”". This
check shows that Eq. !1" correctly reproduces the average
mode amplitude and phase for modes n=1–8 for a typical
ensemble of about 200 similar sawteeth. One standard devia-
tion in ensemble statistics is used to calculate the error asso-
ciated with all measurements presented.

In Figs. 1!a"–1!c", this method has been used to measure
the magnetic field associated with the n=1 mode. This mode
is predominately m=0 but has harmonic content arising from
the toroidal geometry. The best theoretical context for future
comparison will be full 3D, nonlinear, two fluid computation,
which is only now becoming possible with state-of-the-art
codes. Presently, measurements are compared with eigen-
functions calculated in cylindrical geometry using a linear
resistive MHD eigenvalue code13 and with profiles calcu-
lated in a toroidal geometry from linear initial-value single-
fluid simulations using NIMROD.14 Though this mode is non-
linearly driven in the experiment, the comparison with linear
theory is justified by noting that slowly varying magnetic
perturbations have robust global spatial structures. Since the
timescales of the sawtooth cycle are much longer than the
Alfvenic timescale, the magnetic profiles are weakly sensi-
tive to the mechanism—linear or nonlinear—of the mode
excitation.15

Both of these linear calculations !cylindrical and toroi-
dal" require evaluation of an equilibrium which is unstable to
the n=1 mode. It has been shown recently16 that there is a
wide class of equilibrium current profiles for which the
m=0 mode is spontaneously unstable, some of which are
very close !in terms of global parameters" to the experimen-
tally realized equilibrium. One of these profiles, which sup-
ports an unstable m=0 mode but has an equilibrium close to
that of the experiment, was chosen for evaluation and used
for both cylindrical and toroidal calculations. The compari-
son shown in Figs. 1!a"–1!c" illustrates substantial differ-
ences between the cylindrical and toroidal computations and
shows strong agreement between experimental profiles and
toroidal computation.

Figures 1!d"–1!f" show the measured B& and B% mode
amplitude profiles for n=6–8, respectively. While toroidal
effects could play a role in the structure of these modes,
toroidal calculations are not yet available for comparison. We
include the measured profiles here for reference in our later
discussion of Hall term measurements.

With measurement of the mode-resolved magnetic field
in hand, the reconnection field structure can be visualized by
plotting contours of toroidal flux. Integration of the measured
toroidal field from the wall using only the equilibrium field
and the n=1 component results in the toroidal flux associated
with the n=1 reconnection. Contours of this flux yield a
visualization of the associated two-dimensional field lines,
shown in Fig. 2!a". The addition of the mode contributions
from n=2, 3, and 4, including the relative phases of these
modes, provide a more complete visualization of the mag-
netic field, seen in Fig. 2!b". In particular, the addition of
these modes does not destroy the overall shape of the n=1
island, indicating that a coherent m=0 dominated structure
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likely exists in these plasmas. The addition of mode content
n#4 would be yet more complete, but these modes have
dominant m=1 and therefore a different direction of symme-
try that cannot be visualized on the same two-dimensional
toroidal flux plot.

To identify the driving mechanism for n=1 reconnec-
tion, we examine generalized Ohm’s law

E + v ! B − $J −
1
ne

J ! B +
1
ne

# · P −
me

ne2

$J

$t
= 0 !2"

evaluated for this mode by applying the mathematics of Eq.
!1" to the entirety of Eq. !2". Again, it is conceptually advan-
tageous to consider the average as a spatial average over
toroidal angle %.

The analysis of magnetic probe measurements results
in the Fourier spatial structure of the field !B̃=Bn
= &bn&ei!n%+m&−)"" as a function of radius; therefore, all spatial
derivatives of B̃ are known. Four terms of the parallel Ohm’s
law !& direction" can be evaluated for m=0 modes from
magnetic field measurements. !1" The parallel electric field,
Ẽ&, has no electrostatic component !#&*=0 for m=0
modes", so Faraday’s law gives E&=−!iR /n"!$Br /$t". !2"
Current density is evaluated from Ampere’s law, J̃=#! B̃.
The resistive term is evaluated using local Langmuir probe
measurements of temperature and density to calculate the
Spitzer resistivity, using Te=60 eV, ne=1019 m−3, Zeff=3.
!3" The Hall term can be evaluated mode-by-mode,
!J!B"n= !J0!Bn"+ !Jn!B0"+nonlinear terms. Nonlinear
Hall terms will be discussed in detail below. !4" The electron
inertia term, !me /ne2"!$J /$t", has been calculated but is
found to be negligibly small. We will not consider it further.

At each radius, the n=1 Hall term, !J!B"!n=1", can be
calculated from the independent Fourier decomposition of J
and B. To illustrate, consider the nonlinear three-wave cou-
pling of n=6 and 7 to n=1,

J6!r" ! B7!r" = &j6&cos!& + 6% − ) j6" ! &b7&cos!& + 7% − )b7"

=
&j6&&b7&

2
+ cos!% + )J6 − )B7" + !n = 13 wave" ,

where + is introduced to account for the statistical phase

FIG. 2. !Color" Contours of toroidal flux in the reconnection !r−%" plane.
!a" n=1. !b" n=1–4. Inclusion of n=2–4 compresses the O-point and dam-
ages the structure of the X-point. The conducting wall of MST is located
along the bottom edge of the figure !depth=0".

FIG. 1. !Color" Panels !a", !b", and !c" show the dominant part !real or imaginary" of magnetic field profiles for n=1 B%, B&, and Br, respectively; for
cylindrical calculation !black", toroidal calculation !red", and data !points". Since the complimentary part !imaginary or real" is small, these can be interpreted
as the mode’s amplitude with relative sign information included. The experiment’s radial magnetic field, Br, is inferred from # ·B! =0. Measurements of Br are
consistent with the inferred values but have much larger error bars. Panels !d", !e", and !f" show the B& !green" and B% !blue" measured profiles for n=6, 7,
and 8, respectively.
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alignment of the three modes. To calculate + explicitly, we
take the spatial variation of each mode pairing and substitute
into Eq. !1" to find

!J̃p ! B̃q"n =
jp

!!r"bq!r"'&xn&&xp&&xq&!ei!)xn
+)xp

−)xq
""(

2'&xn&('&xp&('&xq&(
,

with q− p=n. Here &xn& represents the amplitude of the nth
mode, as measured by the toroidal array at the wall. While
jp

!!r" and bq!r" are measured inside the plasma, the factor

+ =
'&xn&&xp&&xq&!ei!)xn

+)xp
−)xq

""(
'&xn&('&xp&('&xq&(

for this three-wave interaction is measured at the wall. This
is called the bicoherence17 of the three waves and represents
the statistical phase alignment of the three modes. The am-
plitude of this quantity !ranging from 0 to 1" measures the
degree of nonlinear coupling in the system. For these mea-
surements, &+&)0.9 at the peak of the sawtooth, indicating
the plasma is in a strongly nonlinear regime, and generally
validating the analysis’ assumption of strong coupling. The
measured nonlinear Hall term presented is a sum over all
three-wave terms of this type !i.e., sum over p and q, also
including analogous terms with p−q=n" available for the
evaluated modes, n=0–8. Correctly evaluating the phase of
all modes allows Ohm’s law terms to be evaluated at the
toroidal location of the mode’s X-point.

Figures 3!a" and 3!b" show the values of the measured
n=1 X-point Ohm’s law terms versus time and radius, re-
spectively, using the sign convention E=$J+ !1 /ne"J!B
+ !unmeasured terms". Without measurement of the remain-
ing terms, experimental verification of the balance of Ohm’s
law is not available; however, we draw significant physics
conclusions about the nature of this reconnection from the
available measurements.

The measured ordering, J!B"E#$J, implies that two
fluid effects are an important contributor to the dynamics of
this reconnection.18 Island growth and decay are associated
with positive and negative electric field, respectively, which
may be taken as a measurement of the reconnection rate. The
positive sign of the nonlinear Hall term at this location there-
fore indicates that it is driving term for reconnection during
the first half of the sawtooth. Though it is not shown in these
plots, it is observed that the linear Hall term, !J0!Bn"+ !Jn
!B0", is small !less than 0.5 V/m" at this location and that
the nonlinear Hall term is dominated by the contributions
from the !1,6" and !1,7" coupling and the !1,7" and !1,8"
coupling, indicating that it is the nonlinear coupling of these
unstable core modes which provides the nonlinear Hall drive.
The peaking of the Hall term in Fig. 3!b" can be traced back
to the peaking of the toroidal field components of Figs.
1!d"–1!f".

Ohm’s law observations are also supported by nonlinear
simulation. In linear single-fluid tearing mode theory, the re-
connection electric field is balanced by $J; in single-fluid
nonlinear calculation using the nonlinear MHD code
DEBS,19 we have observed large positive nonlinear −v!B
contributions in direct analogy to the nonlinear Hall term
seen in the experiment.

In conclusion, we have measured the magnetic field
structure of a driven edge mode in the RFP, which compares
favorably with toroidal simulation, and deduced that the non-
linear Hall term of Ohm’s law is a driving term for this
mode. The broader impact of this result is that we have mea-
sured reconnection with the property that E%$J at the
n=1 reconnection X-point and that the nonlinear Hall term is
capable of driving this reconnection.
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FIG. 3. !Color" Poloidal !parallel" Ohm’s law terms for the n=1 mode as a
function of !a" time and !b" radius. !a" Ohm’s law terms vs time, evaluated
at r /a=.865 !7 cm from the wall" and the phase !toroidal angle" associated
with the X-point of n=1 reconnection. !b" Ohm’s law evaluated at
t=−0.075 ms, the approximate time of peak electric field.
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